

Input voltage up to 80 V DC Single output of 5...36 V DC No input to output isolation

- High efficiency up to 94%
- · Wide input voltage range
- · Low input to output differential voltage
- · Very good dynamic properties
- · Input undervoltage lock-out
- · Parallel configuration possible
- · Continuous no-load and short-circuit proof
- No derating

Safety according to IEC/EN 60950

Summary

The PSR series of positive switching regulators is designed as power supply modules for electronic systems. Their major advantages include a high level of efficiency that remains virtually constant over the entire input range, high reliability, low ripple and excellent dynamic response.

Modules with input voltages up to 80 V are specially designed for secondary switched and batterydriven applications. The case design allows operation at nominal load up to 71 °C without additional cooling.

Model Selection and Key Data

Table 1: Type survey

Output voltage	Output current	Input voltage range	Input voltage	Efficiency ²		Type designation	Options
U _{o nom} [V]	I _{o nom} [A]	<i>U</i> _i [V] ¹	U _{i nom} [V]	η_{min} [%]	η_{typ} [%]	· ·	
5	2	880	40	72	74	PSR 52-7	Y
5	3	880	40	77	79	PSR 53-7	-9, i, P, R, Y
5	4	740	20	82	83	PSR 54-7	-9, i, P, R, Y
5	5	735	20	81	83	PSA 55-7	-9, i, P, R, Y
12	2.5	1580	40	86	87	PSR 122.5-7	-9, i, P, R, Y
15	2.5	1980	40	88	89	PSR 152.5-7	-9, i, P, R, Y
24	2	2980	50	91	92	PSR 242-7	-9, i, P, R, Y
36	2	4280	60	92	94	PSR 362-7	-9, i, P, R, Y

 $^{^{1}}$ See also: Electrical Input Data: $\Delta U_{\text{io min}}.$

Non standard input/output configurations or special custom adaptions are available on request. See also: *Commercial Information: Inquiry Form for Customized Power Supply.*

Table of Contents	Page	Pa	age
		Electromagnetic Compatibility (EMC)Immunity to Environmental Conditions	
Part Number Description	2	Mechanical Data	8
Electrical Input Data	3	Description of Options	. 10
		Accessories EC Declaration of Conformity	

 $^{^2}$ Efficiency at $\textit{U}_{\rm i\;nom}$ and $\textit{I}_{\rm o\;nom}.$

Part Number Description

	PSR 12 2.5 - / TR P Y
Positive switching regulator in case A01PSR	
Nominal output voltage in volt555	
Nominal output current in ampere25	
Operational ambient temperature range T_A -2571 °C7 -4071 °C (option)9	
Options: Inhibit input i Control input for output voltage adjustment ¹ R Potentiometer ¹ P PCB soldering pins 0.5 × 1.0 mm	

Example: PSR 122.5-7iPY = A positive switching regulator with a 12 V, 2.5 A output, ambient temperature range of -25...71°C, inhibit input, potentiometer and PCB soldering pins.

Functional Description

The switching regulators are using the buck converter topology. See also: *Technical Information: Topologies*. The input is not electrically isolated from the output. During the on period of the switching transistor, current is transferred to the output and energy is stored in the output choke in the form of flux. During the off period, this energy forces the current to continue flowing through the output, to the load and back through the freewheeling diode. Regulation is accomplished by varying the on to off duty ratio of the power switch.

These regulators are ideal for a wide range of applications, where input to output isolation is not necessary, or where already provided by an external front end (e.g. a transformer with rectifier). To optimise customer's needs, additional options and accessories are available.

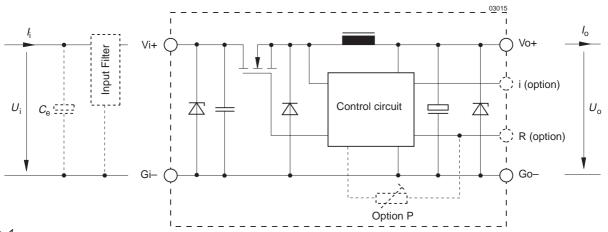


Fig. 1 Block diagram

¹ Option R excludes option P and vice versa.

Electrical Input Data

General Conditions: $T_A = 25$ °C, unless T_C is specified

Table 2a: Input data

Input			Р	SA 5	5	P	SR :	54	Р	SR 53	PSR 52		
Charac	teristics Conditions		min typ ma		max	min typ max		min typ max		min typ max		Unit	
<i>U</i> _i	Operating input voltage	$I_{\rm o}=0I_{\rm o\ nom}$	7		35	7		40	8	80	8	80	V DC
$\Delta U_{\text{io min}}$	Min. diff. voltage $U_i - U_o^{-1}$	T _{C min} T _{C max}			2			2		3		3	
U _{i o}	Undervoltage lock-out			6.3			6.3			7.3		7.3	
I _{i 0}	No load input current	$I_0 = 0, \ U_{i \text{ min}}U_{i \text{ max}}$			45			45		40		40	mA
I _{inr p}	Peak value of inrush current	<i>U</i> _{i nom}		75			75			150		150	Α
t _{inr r}	Rise time			2.5			2.5			2.5		2.5	μs
t _{inr h}	Time to half-value			15			15			15		15	
u _{i RFI}	Input RFI level, EN 55011/22 0.1530 MHz	U _{i nom} , I _{o nom}			B 2			B ²		В3		B 3	

Table 2b: Input data

Input			PS	R 12	2.5	PS	SR 15	52.5	PS	SR 242	PS	SR 362	
Charac	teristics Conditions		min typ max		max	min typ max		min typ max		min typ max		Unit	
<i>U</i> i	Operating input voltage	$I_0 = 0I_{0 \text{ nom}}$	15		80	19		80	29	80	42	80	V DC
$\Delta U_{\rm iomin}$	Min. diff. voltage $U_i - U_o^{-1}$	T _{C min} T _{C max}			3			4		5		6	
<i>U</i> i o	Undervoltage lock-out			7.3			7.3			12		19	Ī
<i>I</i> _{i 0}	No load input current	$I_0 = 0, \ U_{i \text{ min}}U_{i \text{ max}}$			35			35		35		40	mA
I _{inr p}	Peak value of inrush current	U _{i nom}		150			150			150		150	Α
t _{inr r}	Rise time			2.5			2.5			2.5		2.5	μs
t _{inr h}	Time to half-value			15			15			15		15	
u _{i RFI}	Input RFI level, EN 55011/22 0.1530 MHz	U _{i nom} , I _{o nom}			B ³			B ³		B ³		B ³	

¹ The minimum differential voltage $\Delta U_{\text{io min}}$ between input and output increases linearly by 0 to 1 V between T_{A} = 46°C and 71°C (T_{C} = 70°C and 95°C)

External Input Circuitry

The sum of the lengths of the supply lines to the source or to the nearest capacitor •100 μF or to the nearest external input filter which includes such a capacitor (a + b) should not exceed 0.3 m (0.5 m twisted). An external input filter (FP 38 or FP 80, see: Accessories) is recommended in order to prevent power line oscillations and reduce superimposed interference voltages. See also: $Technical\ Information$.

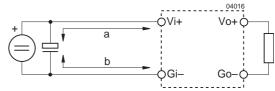


Fig. 2
Switching regulator with long supply lines.

 $^{^2}$ With input filter FP 38 (See: Accessories) and \textit{C}_{e} = 470 $\mu\text{F}/40~\text{V}$

 $^{^3}$ With input filter FP 80 (See: *Accessories*) and $C_{\rm e}$ = 470 μ F/100 V

Electrical Output Data

General Conditions:

 $-T_A = 25$ °C, unless T_C is specified

- With R or option P, output voltage $U_0 = U_{0 \text{ nom}}$ at $I_{0 \text{ nom}}$

Table 3a: Output data

Outpu	t			PS	A 55	PS	R 54	PSF	R 53	PSR	52	
Chara	cteristics		Conditions	min t	ур тах	min t	yp max	min ty	/p max	min ty	max	Unit
Uo	Output volta	age	U _{i nom} , I _{o nom}	4.97	5.03	4.97	5.03	4.97	5.03	4.97	5.03	V
I _o	Output curr	ent 1	U _{i min} U _{i max}	0	5.0 ³	0	4.0	0	3.0	0	2.0	Α
I _{oL}	Output curr response 1	ent limitation	T _{C min} T _{C max}	5.0	6.5	4.0	5.2	3.0	3.9	2.0	2.6	
U _o	Output	Switching freq.	U _{i nom} , I _{o nom}		20 35	,	15 25	2	0 35	20	35	mV_{pp}
	voltage noise	Total	IEC/EN 61204 ² BW = 20 MHz		24 39	,	19 29	2	4 39	24	39	
$\Delta U_{\rm o~U}$	Static line r	egulation	U _{i min} U _{i max} , I _{o nom}	;	30 45	3	30 45	3	0 45	30	45	mV
ΔU _{ol}	Static load	regulation	$U_{\text{i nom}}, I_{\text{o}} = 0I_{\text{o nom}}$		20 25	2	20 25	2	0 25	20	25	
u _{o d}	Dynamic	Voltage deviat.	<i>U</i> i nom	2	250	2	00	10	00	10)	
$t_{\sf d}$	load regulation	Recovery time	$I_{\text{o nom}} \leftrightarrow {}^{1/_{3}}I_{\text{o nom}}$ IEC/EN 61204 ²		40	4	40	5	60	50)	μs
$lpha_{Uo}$	-		U _{i min} U _{i max}		±1		±1		±1		±1	mV/K
			$I_0 = 0I_{0 \text{ nom}}$		±0.02		±0.02		±0.02		±0.02	%/K

Table 3b: Output data

Outpu	t			PS	R 12	22.5	PS	R 15	2.5	PS	R 24	12	PS	R 36	62	
Chara	cteristics		Conditions	min	typ	max	min	typ r	max	min	typ ı	max	min 1	ур	max	Unit
Uo	Output volta	age	U _{i nom} , I _{o nom}	11.93		12.07	14.91	1	5.09	23.86	2	24.14	35.78	3	36.22	V
I _o	Output curr	ent ¹	U _{i min} U _{i max}	0		2.5	0		2.5	0		2.0	0		2.0	Α
I _{oL}	Output curr response 1	ent limitation	T _{C min} T _{C max}	2.5		3.25	2.5	3	3.25	2.0		2.6	2.0		2.6	
u _o	Output	Switching freq.	U _{i nom} , I _{o nom}		30	45		40	75		45	95		80	160	mV_{pp}
	voltage noise	Total	IEC/EN 61204 ² BW = 20 MHz		35	50		44	80		50	100		85	165	
∆U _{o U}	Static line re	egulation	U _{i min} U _{i max} , I _{o nom}		50	75		70	100		150	220	2	200	270	mV
ΔU _{ol}	Static load	regulation	$U_{\text{i nom}}, I_{\text{o}} = 0I_{\text{o nom}}$		35	45		40	55		120	160		125	160	
u _{o d}	Dynamic	Voltage deviat.	U _{i nom}		180			180			210		2	250		
t _d	load regulation	Recovery time	$I_{\text{0 nom}} \leftrightarrow \frac{1}{3} I_{\text{0 nom}}$ IEC/EN 61204 ²		60			60			80		,	100		μs
α_{Uo}			U _{i min} U _{i max}			±2			±3			±5			±8	mV/K
			$I_0 = 0I_{0 \text{ nom}}$			±0.02		±	0.02		±	0.02		±	±0.02	%/K

¹ See also: Thermal Considerations.

² See: *Technical Information: Measuring and Testing.*³ Linear derating from 5 to 4 A between $T_A = 61$ °C and 71 °C ($T_C = 85$ °C and 95 °C).

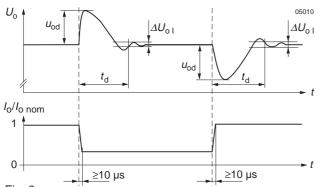


Fig. 3
Dynamic load regulation.

Thermal Considerations

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature $T_A = 71\,^{\circ}\text{C}$ and is operated at its nominal output current $I_{\text{O nom}}$, the case temperature T_{C} will not exceed 95 °C after the warm-up phase, measured at the *Measuring point of case temperature* T_{C} (see: *Mechanical Data*).

Under practical operating conditions, the ambient temperature $T_{\rm A}$ may exceed 71°C, provided additional measures (heat sink, fan, etc.) are taken to ensure that the case temperature $T_{\rm C}$ does not exceed its maximum value of 95°C.

Example: Sufficient forced cooling allows $T_{A \text{ max}} = 85 \,^{\circ}\text{C}$. A simple check of the case temperature T_{C} ($T_{C} \leq 95 \,^{\circ}\text{C}$) at full load ensures correct operation of the system.

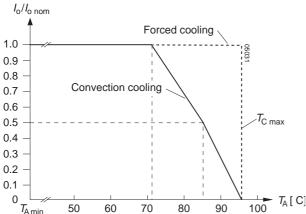
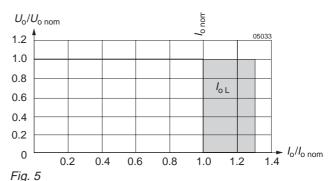


Fig. 4
Output current derating versus temperature

Output Protection

A voltage suppressor diode which in worst case conditions fails into a short circuit, protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages. The user should ensure that systems with Power-One power supplies, in the event of a failure, do not result in an unsafe condition (fail-safe).

Parallel and Series Connection


Outputs of equal nominal voltages can be parallel-connected. However, the use of a single unit with higher output power, because of its power dissipation, is always a better solution.

In parallel-connected operation, one or several outputs may operate continuously at their current limit knee-point which will cause an increase of the heat generation. Consequently, the max. ambient temperature value should be reduced by 10 K.

Outputs can be series-connected with any other module. In series-connection the maximum output current is limited by the lowest current limitation. Electrically separated source voltages are needed for each module!

Short Circuit Behaviour

A constant current limitation circuit holds the output current almost constant whenever an overload or a short circuit is applied to the regulator's output. It acts self-protecting and recovers – in contrary to the fold back method – automatically after removal of the overload or short circuit condition.

Overload, short-circuit behaviour U₀ versus I₀.

Auxiliary Functions

LED Output Voltage Indicator

A yellow output indicator LED shines when the output voltage is higher than approx. $3\ V$.

The LED output voltage indicator is not available for PSR 52.

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

General condition: Case not earthed.

Table 4: Immunity type tests

Phenomenon	Standard 1	Class Level		Value applied	Waveform	Source Imped.	Test procedure	In oper.	Per- form.
Voltage surge	IEC 60571-1		i/c, +i/–i	800 V _p	100 µs	100 Ω		yes	В
				1500 V _p	50 µs		1 pos. and 1 neg. voltage surge per coupling mode		
				3000 V _p	5 µs				
				4000 V _p	1 µs				
				7000 V _p	100 ns				
Electrostatic discharge	IEC/EN 61000-4-2	3	contact discharge to case	6000 V _p	1/50 ns	330 Ω	10 positive and 10 negative discharges	yes	B 4
Electromagnetic field	IEC/EN 61000-4-3	2	antenna	3 V/m	AM 80% 1 kHz		261000 MHz	yes	А
Electrical fast	IEC/EN	3	i/c, +i/–i	2000 V _p	bursts of 5/50 ns	50 Ω	1 min positive	yes	A 4
transient/burst	61000-4-4	4		4000 V _p	5 kHz rep. rate transients with 15 ms burst duration and a 300 ms period		1 min negative bursts per coupling mode		B 4
Surge	IEC/EN	2	i/c	1000 V _p	1.2/50 µs	12 Ω	5 pos. and 5 neg.	yes	B 4
	61000-4-5		+i/–i	500 V _p		2 Ω	surges per coupling mode		
Conducted disturbances	IEC/EN 61000-4-6	3	i, o, signal wires	140 dBμV (10 V _{rms})	AM 80% 1 kHz	150 Ω	0.1580 MHz	yes	А

¹ For related and previous standards see: *Technical Information: Safety & EMC*.

Electromagnetic Emission

For emission levels refer to: Electrical Input Data.

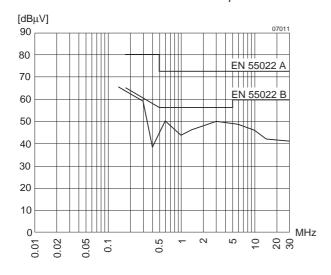


Fig. 6
Typical disturbance voltage (quasi-peak) at the input according to EN 55011/22 measured at U_{i nom} and I_{o nom}.

² i = input, o = output, c = case.

³ A = Normal operation, no deviation from specifications, B = Normal operation, temporary deviation from specs possible.

⁴ External input filter FP 38 or FP 80 necessary.

Immunity to Environmental Conditions

Table 5: Mechanical stress

Test	Method	Standard	Test Conditions		Status
Ca	Damp heat steady state	IEC/DIN IEC 60068-2-3 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	40 ±2 °C 93 +2/-3 % 56 days	Unit not operating
Ea	Shock (half-sinusoidal)	IEC/EN/DIN EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	100 g _n = 981 m/s ² 6 ms 18 (3 each direction)	Unit operating
Eb	Bump (half-sinusoidal)	IEC/EN/DIN EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	$40 g_n = 392 \text{ m/s}^2$ 6 ms 6000 (1000 each direction)	Unit operating
Fc	Vibration (sinusoidal)	IEC/EN/DIN EN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.7 mm (1060 Hz) 10 g _n = 98 m/s ² (602000 Hz) 102000 Hz 7.5 h (2.5 h each axis)	Unit operating
Fda	Random vibration wide band Reproducibility high	IEC 60068-2-35 DIN 40046 part 23	Acceleration spectral density: Frequency band: Acceleration magnitude: Test duration:	0.2 g ² /Hz 20500 Hz 9.8 g _{rms} 3 h (1 h each axis)	Unit operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN/DIN IEC 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30°C) 2 h per cycle 40°C, 93% rel. humidity 22 h per cycle 3	Unit not operating

Table 6: Temperature specifications, valid for air pressure of 800...1200 hPa (800...1200 mbar)

Tem	perature	Stand	lard -7	Opti			
Characteristics Conditions		min	max	min	max	Unit	
T_{A}	Ambient temperature	Operational ¹	-25	71	-40	71	°C
T_{C}	Case temperature		-25	95	-40	95	
Ts	Storage temperature	Non operational	-40	100	-55	100	

¹ See: Thermal Considerations

Table 7: MTBF and device hours

MTBF	Ground	l Fixed	Ground	Device Hours 1	
MTBF acc. to MIL-HDBK-217D	$T_{\rm C} = 40^{\circ}{\rm C}$ $T_{\rm C} = 70^{\circ}{\rm C}$		<i>T</i> _C = 40°C	<i>T</i> _C = 70°C	
	160'000	70'000 h	45'000 h	22'000 h	5'100'000 h

¹ Statistical values, based on an average of 4300 working hours per year and in general field use.

Mechanical Data

Dimensions in mm. Tolerances ±0.3 mm unless otherwise specified.

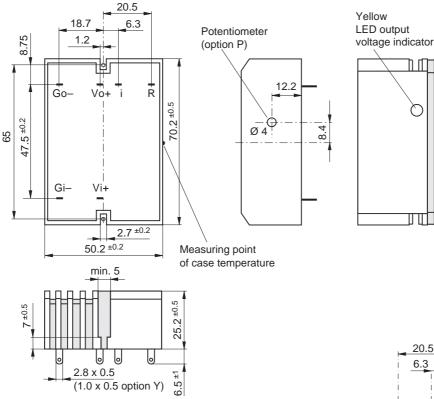
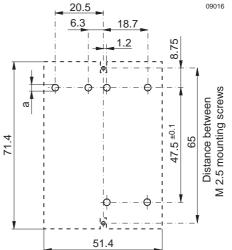



Fig. 7
Case A01, weight 100 g
Aluminium, black finish
and self cooling

Fig. 8
Case A01 hole locations for circuit board layout (component side view of PCB):

--- = Space reserved for switching regulator a = 3.0 mm x 0.7 mm slot or Ø 3.0 mm, through

plated for hand or machine soldering (fast on) $a = \emptyset 1.3...1.5$ mm with option Y pins

Safety and Installation Instructions

Installation Instruction

Installation of the switching regulators must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings and segregation requirements of the end-use application.

Check for hazardous voltages before altering any connections. Connections can be made using fast-on or soldering technique.

The input and the output circuit are not separated, i.e. the negative path is internally interconnected!

The units should be connected to a secondary circuit. Do not open the module.

Ensure that a unit failure (e.g. by an internal short-circuit) does not result in a hazardous condition. See also: *Safety of operator accessible output circuit*.

Cleaning Agents

In order to avoid possible damage, any penetration of cleaning fluids is to be prevented, since the power supplies are not hermetically sealed.

Protection Degree

The protection degree is IP 40 and IP 20 with option P and for PSR 52.

Isolation

Electric strength test voltage between input interconnected with output and case: 750 V DC, 1 s.

This test is performed as factory test in accordance with IEC/EN 60950 and UL 1950 and should not be repeated in the field. Power-One will not honour any guarantee claims resulting from electric strength field tests.

Standards and Approvals

All switching regulators are UL recognized according to UL 1950 and EN 60950, UL recognized for Canada to CAN/CSA C22.2 No. 234-M90.

The units have been evaluated for:

- Building in,
- Functional insulation from input to output and input/output to case,
- The use in an overvoltage category II environment,
- The use in a pollution degree 2 environment.

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned UL and CSA and with ISO 9001 standards.

Safety of Operator Accessible Output Circuit

If the output circuit of a switching regulator is operator-accessible, it shall be an SELV circuit according to IEC/EN 60950 related safety standards

The following table shows some possible installation configurations, compliance with which causes the output circuit of the switching regulator to be an SELV circuit according to IEC/EN 60950 up to a nominal output voltage of 30 V.

However, it is the sole responsibility of the installer or user to assure the compliance with the relevant and applicable safety regulations.

More information is given in: *Technical Information: Safety & FMC.*

Table 8: Safety concept leading to an SELV output circuit

Conditions	Front end			Switching regulator	Result
Supply voltage	Minimum required grade of isolation, to be provided by the AC-DC front end, including mains-supplied battery charger	Maximum DC output voltage from the front end ¹	Minimum required safety status of the front end output circuit	Measures to achieve the specified safety status of the output circuit	Safety status of the switching regulator output circuit
Battery	Double or Reinforced	≤60 V	SELV circuit	None	SELV circuit
supply, considered as secon-		≥60 V	Earthed hazardous voltage secondary circuit ²	Input fuse ³ and non accessible case ⁵	Earthed SELV circuit
dary circuit			Unearthed hazardous voltage secondary circuit 5	Input fuse ³ and unearthed, non accessible case ⁵	Unearthed SELV circuit
			Hazardous voltage secondary circuit	Input fuse ³ and earthed output circuit ⁴ and non accessible case ⁵	Earthed SELV circuit
Mains	Basic	≤60 V	Earthed SELV circuit 4	None	
-250 V AC			ELV circuit	Input fuse 3 and earthed output	
		≥60 V	Hazardous voltage secondary circuit	circuit ⁴ and non accessible case ⁵	
	Double or reinforced	≤60 V	SELV circuit	None	SELV circuit
		≥60 V	Double or reinforced insulated unearthed hazardous voltage secondary circuit 5	Input fuse ³ and unearthed and non accessible case ⁵	Unearthed SELV circuit

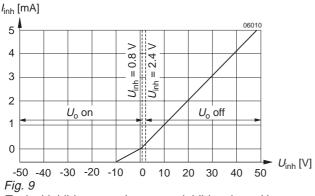
¹ The front end output voltage should match the specified input voltage range of the switching regulator.

² The conductor to the Gi– terminal of the switching regulator has to be connected to earth by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

³ The installer shall provide an approved fuse (slow blow type with the lowest current rating suitable for the application, max. 12.5 A) in a non-earthed input conductor directly at the input of the switching regulator. If Vo+ is earthed, insert the fuse in the Gi- line. For UL's purpose, the fuse needs to be UL-listed. If option C is fitted, a suitable fuse is already built-in in the Vi+ line.

⁴ The earth connection has to be provided by the installer according to the relevant safety standard, e.g. IEC/EN 60950.

⁵ Has to be insulated from earth by double or reinforced insulation according to the relevant safety standard, based on the maximum output voltage from the front end.



Description of Options

i Inhibit for Remote On and Off

Note: With open i-input, output is enabled ($U_0 = \text{on}$). Not available for PSR 52.

The inhibit input allows the switching regulator output to be disabled via a control signal. In systems with several units, this feature can be used, for example, to control the activation sequence of the regulators by a logic signal (TTL, C-MOS, etc.). An output voltage overshoot will not occur when switching on or off.

Typical inhibit current linh versus inhibit voltage Uinh

Fig. 10 Definition of I_{inh} and U_{inh}



Fig. 11
Output response as a function of inhibit signal

Tahle	9· 1	nhihit	characte	rictics

Characteristics			Conditions	min	typ max	Unit
	Inhibit input voltage to keep	$U_{o} = on$	U _{i min} U _{i max} T _{C min} T _{C max}	-10	+0.8	V DC
	regulator output voltage	$U_{o} = off$		+2.4	+50	
t _r	Switch-on time after inhibit co	Switch-on time after inhibit command		2		ms
t _f	Switch-off time after inhibit command		$R_{\rm L} = U_{\rm o \ nom} / I_{\rm o \ nom}$		4	
<i>I</i> i inh	Input current when inhibited	$U_{i} = U_{i \text{ nom}}$		mA		

R Control for Output Voltage Adjustment

Note: With open R input, $U_0 \approx 1.08~U_{o~nom}$. (Exception: With option Y, $U_0 \approx 1.00~U_{o~nom}$)
Option R excludes option P and vice versa.
Not available for PSR 52.

The output voltage $U_{\rm o}$ can either be adjusted with an external voltage ($U_{\rm ext}$) or with an external resistor ($R_{\rm 1}$ or $R_{\rm 2}$). The adjustment range is 0...108% of $U_{\rm o\ nom}$. The minimum differential voltage $\Delta U_{\rm io\ min}$ between input and output (see: *Electrical Input Data*) should be maintained. Under-voltage lock-out = Minimum input voltage.

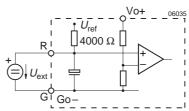


Fig. 12 Voltage adjustment with U_{ext} between R and Go–

a) Without option Y: $U_o = 0...108\%$ $U_{o \text{ nom}}$, using U_{ext} $U_{ext} \approx \frac{2.5 \text{ V} \cdot U_o}{1.08 \cdot U_{o \text{ nom}}} \qquad U_o \approx 1.08 \ U_{o \text{ nom}} \cdot \frac{U_{ext}}{2.5 \text{ V}}$

b) With option Y:
$$U_{\text{o}} = 0...108\% \ U_{\text{o nom}}$$

$$U_{\text{ext}} \approx \frac{2.5 \ \text{V} \bullet \ U_{\text{o}}}{U_{\text{o nom}}} \qquad U_{\text{o}} \approx U_{\text{o nom}} \bullet \frac{U_{\text{ext}}}{2.5 \ \text{V}}$$

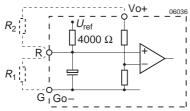


Fig. 13 Voltage adjustment with external resistor R_1 or R_2

c) Without option Y: $U_0 = 0...108\%$ $U_{0 \text{ nom}}$, using R_1 $R_1 \approx \frac{4000 \ \Omega \bullet \ U_0}{1.08 \bullet \ U_{0 \text{ nom}} - U_0} \qquad U_0 \approx \frac{1.08 \bullet \ U_{0 \text{ nom}} \bullet R_1}{R_1 + 4000 \ \Omega}$

d) With option Y: $U_0 = 0...100\% U_{0 \text{ nom}}$, using R_1


$$R_1 \approx \frac{4000 \ \Omega \bullet U_0}{U_{0 \ nom} - U_0}$$
 $U_0 \approx \frac{U_{0 \ nom} \bullet R_1}{R_1 + 4000 \ \Omega}$

e) With option Y: $U_0 = 100...108\%~U_{0 \text{ nom}}$, using R_2

$$R_2 \approx \frac{4000 \ \Omega \bullet U_0 \bullet (U_{0 \text{ nom}} - 2.5 \ V)}{2.5 \ V \bullet (U_0 - U_{0 \text{ nom}})}$$

$$U_{\rm o} \approx \frac{U_{\rm o \ nom} \cdot 2.5 \ {\rm V} \cdot R_2}{2.5 \ {\rm V} \cdot (R_2 + 4000 \ \Omega) - U_{\rm o \ nom} \cdot 4000 \ \Omega}$$

Caution: To prevent damage $U_{\rm ext}$ should not exceed 20 V, nor be negative and R_2 should never be less than 47 k Ω .

-9 Extended Temperature Range

Note: Not available for PSR 52.

The operational ambient temperature range is extended to $T_A = -40...71$ °C. ($T_C = -40...95$ °C, $T_S = -55...100$ °C.)

Y PCB Soldering Pins

This option defines soldering pins of $1.0 \times 0.5 \times 6.5$ mm, instead of the standard fast-on terminals of $2.8 \times 0.5 \times 6.5$ mm. Regulators with this option can be mounted onto printed circuit boards (through-plated finished hole size of \emptyset 1.3...1.5 mm).

The combination of option Y with option R will result in a different setting of the output voltage (see also description of: *R Control*).

P Potentiometer

Note: Not available for PSR 52.

Option P excludes option R. The output voltage U_0 can be adjusted with a screwdriver in the range from 0.92...1.08 of the nominal output voltage U_0 nom.

However, the minimum differential voltage $\Delta U_{\text{i o min}}$ between input and output voltages as specified in: *Electrical Input Data* should be maintained.

Accessories

A variety of electrical and mechanical accessories are available including:

- Isolation pads for easy and safe PCB-mounting.
- Filters and ring core chockes for ripple and interference reduction.
- Adaptor kits for DIN-rail and chassis mounting.

For detailed information see: *Accessories* on the Power-One homepage.

NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not authorized for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written consent of the respective divisional president of Power-One, Inc.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

EC Declaration of Conformity

We

Power-One AG Ackerstrasse 56 CH-8610 Uster

declare under our sole responsibility that all PSx Series switching regulators carrying the CE-mark are in conformity with the provisions of the Low Voltage Directive (LVD) 73/23/EEC of the European Communities.

Conformity with the directive is presumed by conformity wih the following harmonized standards:

- EN 61204: 1995 (= IEC 61204: 1993, modified)
 Low-voltage power supply devices, d.c. output Perfomance characteristics and safety requirements
- EN 60950: 1992 + A1: 1993 + A2 (= IEC 950 second edition 1991 + A1: 1992 + A2: 1993)
 Safety of information technology equipment

The installation instructions given in the corresponding data sheet describe correct installation leading to the presumption of conformity of the end product with the LVD. All PSx Series switching regulators ar components, intended exclusively for inclusion within other equipment by an industrial assembly operation or by professional installers. They must not be operated as stand alone products.

Hence conformity with the Electromagnetic Compatibility Directive 89/336/EEC (EMC Directive) needs not to be declared. Nevertheless, guidance is provided in most product application notes on how conformity of the end product with the indicated EMC standards under the responsibility of the installer can be achieved, from which conformity with the EMC directive can be presumed.

Uster, 17 Sep. 2003

Power-One AG

Rolf Baldauf
Director Engineering

Johann Milavec
Director Projects and IP